Innocor®

Cardiopulmonary Exercise Testing with Non-Invasive Measurement of Cardiac Output

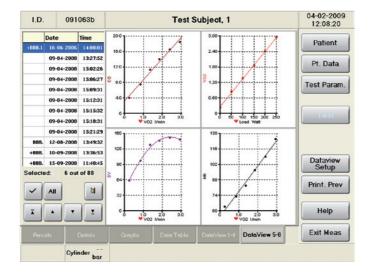
- Hemodynamic measurements by inert gas rebreathing
- True breath-by-breath metabolic gas exchange analysis
- Spirometry and SpO₂

Unique non-invasive solutions for hemodynamic exercise testing

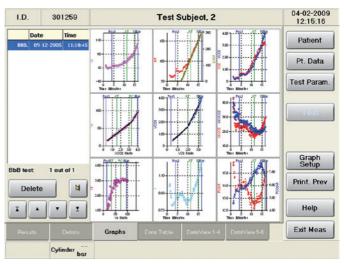
Complete CPET

Innocor[®] combines direct, non-invasive hemodynamic measurements with traditional metabolic measurements using true breath-by-breath gas exchange analysis for determination of VO₂, VCO₂ and V_E plus a large number of derived variables such as peak VO₂, AT, and V_E/VCO₂.

Innocor[®] gives the complete metabolic and hemodynamic profile comprising a conventional cardiopulmonary exercise test (CPET) together with non-invasive measurement of cardiac output. This unique combination enables the possibility to distinguish between ventilatory, central circulatory or peripheral causes of exercise intolerance.


By using inert gas rebreathing for the hemodynamic measurements the hazards and costs of using PA-catheters are eliminated and inaccuracies of other noninvasive methods avoided. All in all, Innocor[®] represents a significant contribution to enhanced patient care, safety and reduced health care costs.

Objective Functional Assessment of Patients with Cardiovascular Disorders


Innocor® provides the most comprehensive system available for evaluation of CHF patients or use in all other cases where cardiovascular disorders are suspected or being treated.

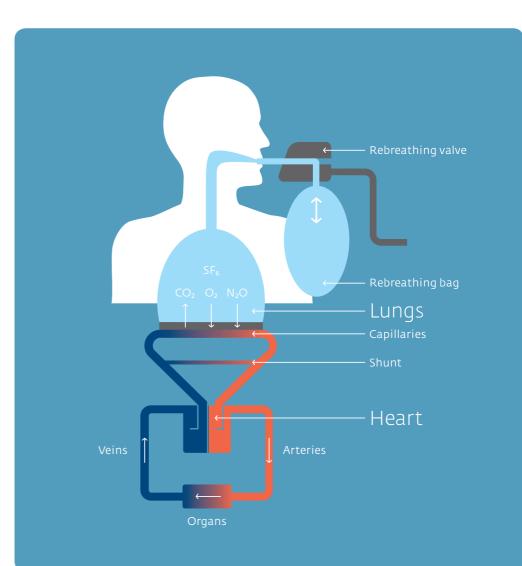
- Innocor[®] is used to assess and monitor cardiovascular disorders
- Innocor® provides important additional information for prognostic evaluation of HF patients
- Innocor[®] is ideal for monitoring during rehabilitation and recovery of HF patients
- Innocor[®] provides objective treatment evaluation
- Innocor[®] is suitable for accurate performance testing

Hemodynamic (cardiac output and stroke volume) response to graded exercise.

9-plots Wasserman screen from breathby-breath test to maximum exertion.

The Exclusive Solution to Non-invasive Hemodynamic Exercise Testing

Innocor[®] is the only instrument on the market utilising the physiologically sound and well-tested principle referred to as Inert Gas Rebreathing for hemodynamic measurements. This principle is 100% analytical and has no empirical base.


During a rebreathing test the subject rebreathes an oxygen enriched mixture containing very small amounts of two physiologically inert gases - one blood soluble and one insoluble component from a closed rebreathing system. The test lasts about 5 breaths or 15 seconds. During this time the blood soluble gas is dissolved in the blood perfusing the ventilated parts of the lungs. Innocor® measures the concentration curve of the blood soluble gas and calculates the wash-out rate, which is proportional to the Cardiac Output. In patients with a significant intra-pulmonary shunt, the shunt flow is calculated by using the well proven Fick principle for oxygen. The blood insoluble gas is measured to determine the lung volume and to account for other factors that affect the distribution of the blood soluble gas.

It is reassuring for the Innocor[®] users to know that the validity of Inert Gas Rebreathing is documented in an impressive number of peer reviewed scientific papers. This documentation applies to diverse conditions in both health and disease and is conclusively far better than for any other non-invasive method. As opposed to other non-invasive techniques, Innocor[®] can be used equally well in patients at rest and during exercise.

Innocor[®] Technologies

Innocor[®] utilises Innovision's proprietary gas analyser technology for measuring nitrous oxide (N₂O, blood soluble), sulphur hexafluoride (SF₆, insoluble) and CO₂ continuously and simultaneously. The advanced analyser is a photoacoustic infrared type which combines a fast response with unsurpassed sensitivity and accuracy and inherent stability. No tedious calibrations are required – all you need is a yearly calibration check. This technology replaces a medical mass spectrometer for inert gas analysis and offers superior performance, compactness and reduced cost.

The oxygen sensor uses laser diode absorption spectroscopy, meaning no limited life parts. A Nafion sampling tube ensures optimal humidity removal.

Features

- Proven analytical methodology
- Compact and portable
- No daily calibration of gas analyser

Innocor[®] is easy to use

Innocor[®] is small and portable. Switch it on and you are ready to go. No tedious gas calibrations to distract you from the full attention to your patient. The rebreathing test takes less than 1 minute and can be repeated within short intervals. Training in the use of Innocor[®] takes short time. The software is intuitive with only one interface for the operator: a bright and colourful 12-inch LCD touch screen.

Innocor[®] is cost effective

Compared to other methods of assessment Innocor[®] is competitive both in cost of the device, maintenance and daily use. Therefore, Innocor[®] is a realistic option not only in specialised hospital departments but also in most other segments of the health care system including out-patients departments dealing with cardiovascular diseases.

Innocor[®] connects to other systems

The built-in Ethernet and USB interfaces allow data exchange between Innocor[®] and other data storage and analysis systems, including other medical devices (e.g. ECGs) and the offline Viewer version of Innocor[®]. All major treadmills and bicycle ergometers can be controlled by Innocor[®] during an exercise protocol.

Space efficient and portable with integrated lifting slot, allowing free movement.

Miniature gas cylinder with self-dispensing valve for rebreathing gas mixture. Test capacity is expanded typically tenfold by automatic dilution with air, thereby avoiding a bulky external cylinder.

Connectors for networking, printing and PC interface.

Quick connector panel for rebreathing valve, SpO₂ and optional NIBP interfaces.

Pneumatic rebreathing valve with replaceable insert for maximum hygiene. LCD colour display with high resolution and wide viewing angle.

Intuitive Windows software and touch screen for effortless operation.

Product Line

Test parameters \ product models	In Color	oooooooooooooooooooooooooooooooooooooo	Mu CO	0000 m	s woo	S INOCT	ې مېرونې پې ^و ونې
Hemodynamic parameters (Inert Gas Rebreathing) CO, CI, SV, SI, PBF, V _L , HR, SpO ₂		•	•	•	• /	•	•
Derived hemodynamic parameters I SvO ₂ , A-V O ₂ diff., VO ₂ , VO ₂ /kg, Shunt			•		•	•	•
Derived hemodynamic parameters II SYS, DIA, MAP, SVR, SVRI, CPO, CPI				•	•		•
Metabolic parameters (Breath-by-breath technique) VO ₂ , VO ₂ /kg, VO ₂ /HR, VCO ₂ , R, V _E , V _A , V _D , V _T , f _B , F _{ET} O ₂ , F _{ET} CO ₂ , V _E /VO ₂ , V _E /VCO ₂ , V _E /VCO ₂ slope, AT, RC, BR	•					•	•
Spirometry parameters FEV1, FVC, FEV1%, PEF, MEF 75, MEF 50, MEF 25, FET, MVV	•					•	•

* Restricted availability in certain markets

Parameters

CO					Cardiac output
CI					Cardiac index
SV					Stroke volume
SI					Stroke index
PB	F.				Pulmonary blood flow
VL					Lung volume (or FRC)
ΗR					Heart rate
Sp(D₂				Arterial oxygen saturation

Derived hemodynamic

SvO ₂	Mixed venous oxygen saturation
A-V O₂ diff	Arterio-venous O ₂ saturation difference
$VO_2.\ .\ .\ .\ .\ .$	Oxygen uptake (by rebreathing)
VO ₂ /kg	Oxygen uptake per kg (by rebreathing)
Shunt	Intrapulmonary shunt fraction
SYS	Systolic blood pressure
DIA	Diastolic blood pressure
MAP	Mean arterial blood pressure
SVR	Systemic vascular resistance
SVRI	Systemic vascular resistance index
СРО	Cardiac power output
СРІ	Cardiac power index

Metabolic

$VO_2.\ .\ .$			Oxygen uptake
VO ₂ /kg .			Oxygen uptake per kg

VO ₂ /HR	Oxygen pulse
$VCO_2\ .\ .\ .\ .\ .$	Carbon dioxide excretion
R	Respiratory exchange ratio
V_{E}	Expiratory minute ventilation
V _A	Alveolar ventilation
	Anatomical dead space
V_T	
f _в	
	End-tidal concentration of oxygen
	End-tidal concentration of carbon dioxide
	Ventilatory equivalent for oxygen
	Ventilatory equivalent for carbon dioxide
	Slope of V_E versus VCO ₂
	Anaerobic threshold (V-slope method)
	Respiratory compensation (V-slope)
BR	
	Dicacining i esciric
Spirometric	
FEV1	Forced expiratory volume in 1 second
FVC	. ,
FEV ₁ %	. ,
	Peak expiratory flow
MEF 75,	Max. instantaneous forced expiratory flow
MEF 50,	
MEF 25	
	Forced expiratory time

FET Forced expiratory time MVV Maximum voluntary ventilation

Technical Specifications

Gas analyser

(Photoacoustic Spectroscopy)

Components and ranges N ₂ O 0-2.5%, SF ₆ 0-0.5%, CO ₂ 0-10%
Accuracy
Signal-to-noise ratio \ldots > 1000 @ half-scale (N ₂ O and SF ₆)
Sampling frequency
Sample flow rate
Rise time (10-90%)

Oxygen sensor

(Laser diode absorption spectroscopy)

Range											5-100%
Accuracy											±1% rel.
Signal-to-noise ration	ο.									.>	500@21%O ₂
Sampling frequency											100 Hz
Sampling flow rate											. 120 ml/min
Rise time (10-90%)											<170 ms

Flowmeter

(Differential pressure pneumotachometer)

Range
Resolution
Flow accuracy
Volume accuracy
Sampling frequency

Rebreathing valve

(Pneumatic, with silicone valve insert)																											
Deadspace																											.100 ml

Flow resistance without bacterial filter			1.5 cm H₂O @ 5 I/s
--	--	--	--------------------

Gas supply

Pulse oximeter

Oxygen Saturation Range Pulse Rate Range			
Non-invasive Blood Pressure (Oscillometric NIBP)			

Systolic pressure range40 - 260 mmHgDiastolic pressure range20 - 200 mmHgHeart Rate Range40 - 200 BPM

Mechanical

Size	35 x 29 x 26 cm (W x H x D)
Weight (depending on configuration)	8-9 kg

Electrical

Power supply	100-120 V / 200-240 V, 50/60 Hz
Power consumption	
Protection	. Class I type BF according to EN 60601-1

Environmental

Operating temperature									. 10-40°C
Operating pressure								.525	- 800 mmHg

Colour LCD Display

Size/resolution	12.1" SVGA (800x600 pixels)
Touch screen	High-resolution resistive type

Integrated computer

Processor								1 GHz Celeron
Operating system .								.Windows XP Embedded

Electrical interfaces

Printing								.Windows compatible printers
Networking.								PCI 10/100 Mbps Ethernet
PC interfaces								2 x USB 1.1

INNOVISION reserves the right to change specifications without further notice.

Certification/ Safetv standards

Salery standards
· EN ISO 13485
· MDD 93/42/EEC
(CE marking)
· FDA 510(k) clearance
 Meets ERS and ATS

recommendations

EN 60601-1
EN 60601-1-1
EN 60601-1-2
EN ISO 9919
EN 1060-1

· EN 1060-3

CE 0543

COR-BRO-101-IN/UK Rev. 1.001 © 2010 Innovision

Innovision specializes in the design, development and production of medical instruments using advanced gas exchange methods for non-invasive cardiopulmonary measurements. The key technologies represent the results of more than 20 years of space development activities. Innovision is ISO 13485 certified.

The headquarters are located in Denmark, with sales offices in Europe and the USA.

Innovision A/S Lindvedvej 75 DK-5260 Odense S Denmark

Tel. +45 65 95 91 00 Fax +45 65 95 78 00 info@innovision.dk www.innovision.dk

Innovision GmbH

Christian-Rohlfs-Weg 6 D-24568 Kaltenkirchen Germany

Tel. +49 41 91 80 45 74 Fax +49 41 91 80 45 75 eu.sales@innovision.dk www.innovision.dk Innovision, Inc.

7 Piedmont Center, Suite 300 3525 Piedmont Rd. NE Atlanta GA 30305, USA

Tel. +1 404 835 1784 Fax +1 404 574 2317 usa.sales@innovision.dk www.innovision.dk