

Are standard genotoxicity tests useful for the safety evaluation of nanomaterials?

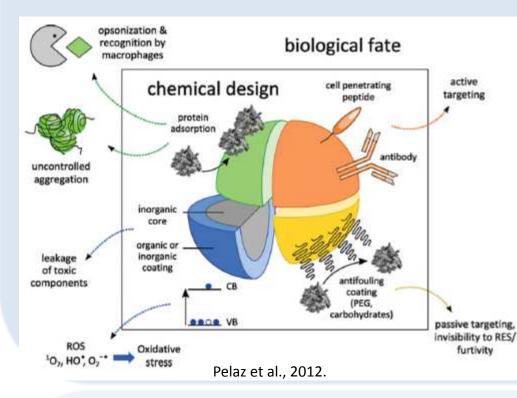
Nacional de Saúde

Serão os testes de genotoxicidade convencionais úteis para a avaliação de segurança dos nanomateriais?

Henriqueta Louro

R&D Unit, Departament of Human Genetics National Institute of Health Dr. Ricardo Jorge, Lisbon

1st NATIONAL MEETING- Nanotechnology: Regulate to compete 3 April 2014


Background

Nanomaterials (NM) -Small size -High surface-to- volume ratio Unique mechanical, optical, electrical and magnetic characteristics

Useful for innovative biomedical and industrial applications.

However, such properties also influence the nano interactions with cellular components

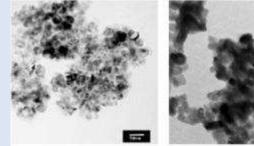
> Need to warrant NMs safe use

Background and objectives

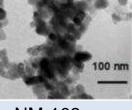
Some Open Questions about NMs safety:

-Do NMs cause genotoxic lesions that may be related to cancer development?

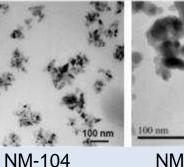
- Are standard genotoxicity tests useful for the safety evaluation of nanomaterials?

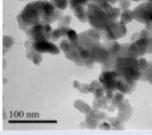


European Joint Action 2010-2013 www.nanogenotox.eu



Methods


Titanium dioxide (TiO₂) nanomaterials from JRC repository



NM-102

NM-103

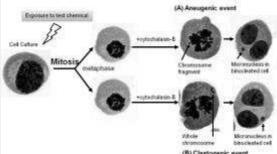
NM-105

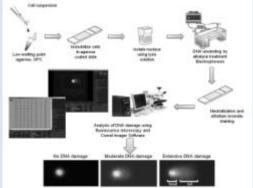
	Aggregates/agglomerates ^d		Primary particles				Specific surface area	Impurities/	Phase (and other	Nanomaterial		
	75% (nm)		25% (nm)	N ^e	Aspect ratio ±SD ^b	Feret Max ± SD (nm) ^b	Feret M in ± SD (nm) ^b	(m²/g) *	coatings (surface modification)	information)*		
	72	54	43	59	1.5±1.3	33.0 ± 1.5	20.8 ± 1.6	90	-	Anatase	NM- 102	TiO ₂
the	129	67	33	40	1.7 ± 1,3	37,9±1,6	21,9±1,4	60	Dimethicone 2%	Rutile (hydrophobic)	NM- 103	
	112	60	33	47	1.4±1.3	25.8±1.4	19.0 ± 1.5	60	Glycerine*	Rutile (hydrophilic)	NM- 104	
	144	90	55	42	1.4±1.2	29.6±1,3	20.0 ± 1,3	61	None	Rutile-anatase (15-85%)	NM- 105	

Tavares et al., Toxicology In vitro (2014)

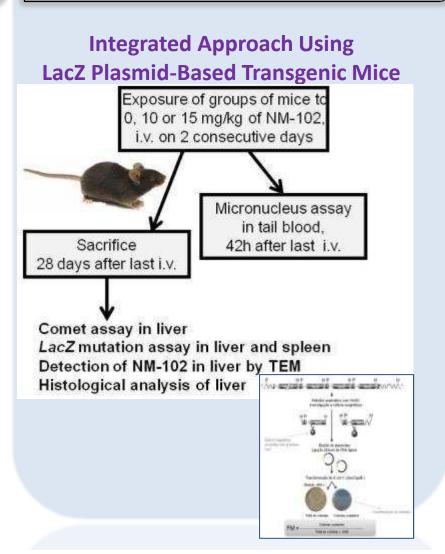
TiO₂- Insoluble NMs Dispersion of NMs according a standardized protocol:

www.nanogenotox.eu




Methods

In vitro testing of TiO₂


Micronucleus assay

Comet assay

Human lung cell lines (BEAS-2B, A549) Human lymphocytes In vivo testing of TiO₂

Results – in vitro

Human Lymphocytes exposed to a panel of TiO₂

 Significant increase in the

 micronucleus frequency in:

 *NM-102: 125 μg/ml (p=0.038),

 *NM-103: 5 e 45 μg/ml (p=0.007

 and 0.039)

 •NM-104: 15 e 45 μg/ml (p=

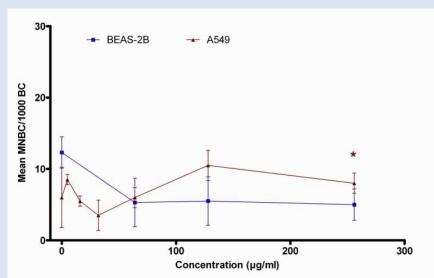
 250 300

 0.037 and 0.048)

25 NM-102 NM-103 ---*- NM-104 ---- NM-105 20 Mean MNBC/1000 BC * 15-10-5 0 20 40 60 100 150 200

Concentration (µg/ml)

Tavares et al., Toxicology In vitro (2014)

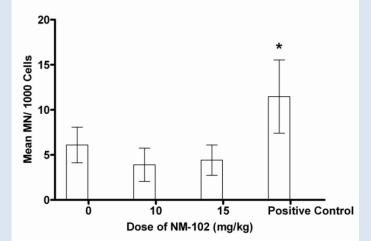

Closely related NMs have distinct genotoxic effects

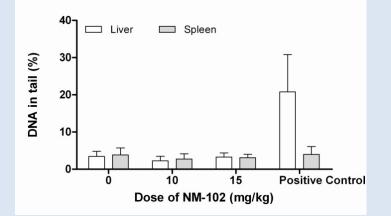
Results – in vitro

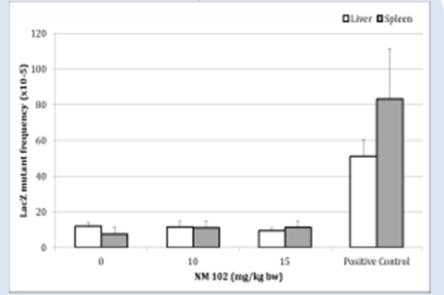
Human lung cells exposed to one TiO₂ (NM-102)

20-

- 15- (%) VI III 10- 5- 10- 100 200 300Concentration (µg/ml)
- Significant increase in the micronucleus frequency in A549 cells exposed to 256 µg/ml.
- Significant increase in DNA breaks in A549 cells exposed to 125 and 256 µg/ml.


The same NM has distinct genotoxic effects on different cell types


Results – in vivo


Micronucleus assay in mouse blood

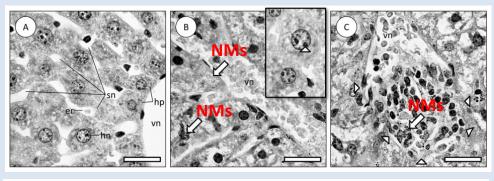
Mutation assay in mouse liver and

Comet assay in mouse liver and spleen

No genotoxic effects of NM-102 in vivo

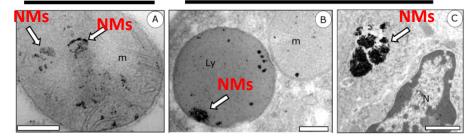
Louro et al., EnvironMol Mut (2014)

Results – in vivo


Bioaccumulation of NM

in mouse liver and

mild inflammatory


effects

Microscopic analysis of mouse liver

10 mg/kg

15 mg/kg

Louro et al., EnvironMol Mut (2014)

Possibility of a secondary genotoxic effect?

Conclusions

• Differential genotoxicity observed for closely related NMs importance of investigating the toxic potential of each NM individually, instead of assuming a common mechanism and equal genotoxic effects for a set of similar NMs.

• Standard genotoxicity tests are useful, an can be applied, for the safety evaluation of nanomaterials – provided that standardized protocols for NM preparation are used and the physicochemical characteristics of NMs are considered.

• Predictivity of the *in vitro* genotoxicity assays for *in vivo* situation with NMs? - to be clarified.

Acknowledgments

INSA team:

Maria João Silva

Instituto Nacional de Saúde

João Lavinha

Ana Tavares

Susana Antunes

Nádia Vital

Microscopic Analysis

Elsa Alverca (INSA)

Pedro Costa (IMAR)

Nanogenotox Partners

Jan Mast (CODA-CERVA)

Pieter-Jan De Temmerman (CODA-CERVA)

Eveline Verleysen (CODA-CERVA)

Keld A. Jensen (NRCWE)

Hannu Norppa (FIOH)

Edwin Zwart (RIVM)

Wim H. de Jong (RIVM)

Valérie Fessard (ANSES)

Safety evaluation of manufactured nanomaterials by characterisation of their potential genotoxic hazard